Random survival forests

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Survival Forests

We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A conservation-of-events principle for survival forests is introduced and used to define ensemble mortality, a simple interpretable measure of mortalit...

متن کامل

Random Survival Forests 1

We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A conservation-of-events principle for survival forests is introduced and used to define ensemble mortality, a simple interpretable measure of mortalit...

متن کامل

ggRandomForests: Survival with Random Forests

Random Forests (Breiman 2001) (RF) are a fully non-parametric statistical method requiring no distributional assumptions on covariate relation to the response. RF are a robust, nonlinear technique that optimizes predictive accuracy by fitting an ensemble of trees to stabilize model estimates. Random Forests for survival (Ishwaran and Kogalur 2007; Ishwaran, Kogalur, Blackstone, and Lauer 2008) ...

متن کامل

Kernel Induced Random Survival Forests

Kernel Induced Random Survival Forests (KIRSF) is a statistical learning algorithm which aims to improve prediction accuracy for survival data. As in Random Survival Forests (RSF), Cumulative Hazard Function is predicted for each individual in the test set. Prediction error is estimated using Harrell’s concordance index (C index) [Harrell et al. (1982)]. The C-index can be interpreted as a misc...

متن کامل

Consistency of Random Survival Forests.

We prove uniform consistency of Random Survival Forests (RSF), a newly introduced forest ensemble learner for analysis of right-censored survival data. Consistency is proven under general splitting rules, bootstrapping, and random selection of variables-that is, under true implementation of the methodology. Under this setting we show that the forest ensemble survival function converges uniforml...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Statistics

سال: 2008

ISSN: 1932-6157

DOI: 10.1214/08-aoas169